

WP2: Thermophysical Properties

Public Final Project Conference and Workshops | July 03.–05., 2023

David Vega-Maza, UVa. WP2 Leader

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

WP2: Thermophysical properties of hydrogen obtained from electrolysis, hydrogen injected in the gas grids and hydrogen under geological storage conditions.

(FUNGE-UVa, BAM, NPL, DBI, RA)

Bundesanstalt für Materialforschung und -prüfung

Start M1, End M36

WP2: Thermophysical properties of hydrogen obtained from electrolysis, hydrogen injected in the gas grids and hydrogen under geological storage conditions.

Aim:

- to develop validation models for hydrogen obtained from electrolysis (power-to-gas)
- to characterize the hydrogen-enriched natural gas mixtures with a hydrogen content of up to 20 %
- to characterize hydrogen under geological storage conditions

Objectives:

- To improve the reference equations of state used for modelling hydrogen injection up to 20 % vol. for energy metering by providing traceable density measurements with a target uncertainty of between 0.03 % to 0.5 % as basis for accurate determination of calorific values of energy gases.
- To tackle metrological and thermodynamic issues in the large-scale storage of hydrogen in underground gas storages (UGS) and the conversion of existing UGS from natural gas to hydrogen.

Task 2.1: Develop and test of experimental techniques to provide reference mixtures of humid hydrogen and humid hydrogen-enriched natural gas. Water vapour enhancement factor in H₂

NPL multi-gas multi-pressure humidity generator

Task 2.2: Influence of the hydrogen content in the saturation curve of hydrogen-enriched natural gas mixtures

- Phase behaviour (accumulation of condensates) according to DIN EN ISO 6570 of H2-enriched natural gas (25%, 50%).
- The experimental (p, ρ , T) data of the H₂-enriched NG mixtures, at least at five different isotherms from 250 K to 375 K and at pressures up to 20 MPa

Task 2.3: Develop reference equations of state (EOS) for hydrogen-enriched natural gas mixtures and hydrogen under geological storage conditions

- $H_2(x) + C_3H_8$. x = 0.95, 0.90, 0.83 have been gravimetrically prepared
- Experimental (*p*, *ρ*, *T*) and speed of sound have been measured at four different isotherms from 273.15 K to 350 K and at pressures up to 20 MPa.
- $H_2(x) + CO$. x = 0.90, 0.75, 0.60 have been gravimetrically prepared
- Experimental (p, ρ, T) and speed of sound of the mixtures H₂ (x) + CO. (x = 0.90, 0.75, 0.60) at four different isotherms from 273.15 K to 350 K and at pressures up to 20 MPa

Thank you for your attention

David Vega-Maza, Uva, WP2

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

WP2: Thermophysical Properties

Workshop | July 03.-05., 2023

David Vega-Maza, UVa. WP2 Leader

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Outline

- Introduction
- Motivation
- Water vapour enhancement factor in H₂
- Experimental (p, ρ , T) data of the H₂-enriched NG mixtures
- Experimental (p, ρ , T) data of the H₂ + C₃H₈ binary mixtures
- Discussion

WP2: Thermophysical properties of hydrogen obtained from electrolysis, hydrogen injected in the gas grids and hydrogen under geological storage conditions.

(FUNGE-UVa, BAM, NPL, DBI, RA)

Bundesanstalt für Materialforschung und -prüfung

Start M1, End M36

Outline

- Introduction
- Motivation
- Water vapour enhancement factor in H₂
- Experimental (p, ρ , T) data of the H₂-enriched NG mixtures
- Experimental (p, ρ , T) data of the H₂ + C₃H₈ binary mixtures
- Discussion

Motivation:

- All aspects of process design, implementation, intensification and safe operation have requirements for thermophysical property data
- These properties are best provided by validated mathematical models that are capable of providing reliable data in all applicable thermodynamic states
- The requirement for validation calls for appraisal of the available experimental data and the acquisition of new data to fill key gaps

Hydrogen Storage Solutions

Application

- Process design. Engineering
- Fiscal metering, allocation metering
- Pipeline leakage control
- Flow measurements, calibration
- Thermodynamic behaviour

Outline

- Introduction
- Motivation
- Water vapour enhancement factor in H₂
- Experimental (p, ρ , T) data of the H₂-enriched NG mixtures
- Experimental (p, ρ , T) data of the H₂ + C₃H₈ binary mixtures
- Discussion

NPL progress, WP2

Metrology for Advanced Hydrogen Storage Solutions

NPL progress, WP2

Metrology for Advanced Hydrogen Storage Solutions

A2.1.2 Water vapour enhancement factor (WVEF) in H_2 and H_2 /methane mixes.

- Evaluation measurements have been made with saturator pressures up to 3 MPa, saturator temperatures (frost points) of -40 °C and -20 °C, at a range of pressure ratios (to atmospheric pressure),
- Data is being analysed. Starting to take into account gas non-ideality of H_2 in the pressure drop ratio (thanks to suggestion by UVa).
- Initial analysis yields values of enhancement factor ratio (relative to value at atmospheric pressure).
- Enhancement factor evaluation in H_2/CH_4 mix not started yet.

A2.1.6 Compare WVEF results with UVa and with models.

Analysis started using GasVLE software with a variety of equations of state.

NPL multi-gas multi-pressure humidity generator

Provisional data, experiment to be repeated in Summer 2023 to confirm results.

Outline

- Introduction
- Motivation
- Water vapour enhancement factor in H₂
- Experimental (p, ρ , T) data of the H₂-enriched NG mixtures
- Experimental (p, ρ , T) data of the H₂ + C₃H₈ binary mixtures
- Discussion

Task 2.2: Influence of the hydrogen content in the saturation curve of hydrogen-enriched natural gas mixtures

- Phase behaviour (accumulation of condensates) according to DIN EN ISO 6570 of H2-enriched natural gas (25%, 50%).
- The experimental (*p*, *ρ*, *T*) data of the H₂-enriched NG mixtures, at least at five different isotherms from 250 K to 375 K and at pressures up to 20 MPa

Task 2.3: Develop reference equations of state (EOS) for hydrogen-enriched natural gas mixtures and hydrogen under geological storage conditions

Daniel Lozano-Martín^a, Peyman Khanipour^b, Heinrich Kipphardt^b, Dirk Tuma^b, César R. Chamorro^{a,*}

 ^a Grupo de Termodinámica y Calibración (TERMOCAL), Research Institute on Bioeconomy, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, E-47011, Valladolid, Spain
 ^b BAM Bundesanstalt für Materialforschung und -prüfung, D-12200, Berlin, Germany

WP2: Thermophysical Properties

vie	TYSIG
	Metrology for Advanced
	Hydrogen Storage Solutions

Natural gas G 431 Without hydrogen				
compound	10 ² X _i / moi moi ⁻	$10^2 U(x_i) / \text{mol mol}^{-1}$		
Methane	97.236138	0.002007		
Nitrogen	1.400965	0.000276		
Ethane	0.398705	0.000033		
Carbon dioxide	0.361460	0.000113		
Propane	0.201221	0.000020		
N-Butane	0.100431	0.000023		
Isobutane	0.100398	0.000052		
Neopentane	0.050781	0.000022		
N-Pentane	0.050072	0.000023		
Isopentane	0.049928	0.000023		
N-Hexane	0.049883	0.000018		
Oxygen	0.000012	0.000012		
Hydrogen	0.000003	0.000003		
Carbon monoxide	0.0000032	0.0000025		
Propene	0.0000020	0.0000023		
Ethene	0.0000004	0.0000005		
Nitrous oxide	0.0000002	0.0000002		

BAM	Natural gas G 432 without hydrogen				
Bundesanstalt für Materialforschung und -prüfung	compound	10² <i>x_i /</i> mol mol ^{−1}	10² <i>U</i> (<i>x_i</i>) / mol mol⁻¹		
	Methane	85.006261	0.002536		
	Nitrogen	0.950799	0.000182		
	Ethane	8.991769	0.000742		
	Carbon dioxide	1.448230	0.000161		
	Propane	3.002561	0.000507		
	N-Butane	0.200443	0.000075		
	Isobutane	0.199935	0.000119		
	Neopentane	0.050035	0.000031		
	N-Pentane	0.050054	0.000020		
	lsopentane	0.049929	0.000020		
	N-Hexane	0.049965	0.000016		
	Oxygen	0.000012	0.000007		
	Hydrogen	0.000002	0.000001		
	Carbon monoxide	0.000001	0.000001		
	Propene	0.000003	0.000003		
	Ethene	0.000001	0.000001		
	Nitrous oxide	0.000001	0.0000001		
		www.mef	hysto.eu 2023-(

14 Final Project Conference and Workshops

Gravimetric Preparation of Gas Mixtures

- according to ISO 6142; metrological traceability
- pre-treatment of cylinders

filling station
 direct gas transfer, evaporation from small cylinders, liquid
 injection via syringe

— use of **pre-mixtures**

15

considering dew points, stability, safety, and accuracy (related to the amount to be introduced)

- mechanical balance Voland HCE 25: 25 kg \pm 15 mg (25 000.000 g \pm 0.015 g)

Mixture Validation by Process-GC

Siemens MAXUM II

- multichannel process GC, 12 TC detectors,
 12 handmade packed columns;
- <u>one single</u> isothermal method(t = const. = 60 °C)
- bracketing method according to ISO 12963
 requires two calibration gases (usually plus and minus 5 % of the nominal sample composition)
- a complete sequence takes 4 hours only

Single Sinker Magnetic Suspension Densimeter

(250 to 400) K

20 MPa

 $U(T) (k = 2) = 4.0 \cdot 10^{-3} \text{ K}$ (0 -3) MPa: $U(p)/\text{MPa} (k = 2) = 60 \cdot 10^{-6} \cdot p/\text{MPa} + 1.7 \cdot 10^{-3}$ (3 - 20) MPa: $U(p)/\text{MPa} (k = 2) = 75 \cdot 10^{-6} \cdot p/\text{MPa} + 3.5 \cdot 10^{-3}$ $U(\rho)/\text{kg} \cdot \text{m}^{-3} (k = 2) = 1.1 \cdot 10^{-4} \cdot \rho/\text{kg} \cdot \text{m}^{-3} + 2.3 \cdot 10^{-2}$

Density Measurements: Zero-Hydrogen Mixture (BAM G 431)

p, T phase diagram showing the state points of the recorded data

Density Measurements: Zero-Hydrogen Mixture (BAM G 431)

0.15 **GERG-2008** $\rho_{EoS})/\rho_{EoS}$ 0.10 EoS model uncertainty of the 0.05 density ρ in the 250K gaseous region: 0.00 ◇ 275K **0.00** 0.10 % ♦ 300K $\times 325K$ **0**-0.10 +350K -0.15 Error bars: Uncertainty 5 10 15 20 0 (k = 2) of the p / MPa experimental data

Comparison between *experiment* and *GERG-2008 EoS*: <u>Average absolute</u> (*value of*) <u>relative deviation</u>: 0.03 %; <u>Maximum relative deviation</u>: 0.05 %

Density Measurements: Zero-Hydrogen Mixture (BAM G 431)

Comparison between *experiment* and *GERG-improved EoS*: <u>Average</u> <u>absolute</u> <u>relative</u> <u>deviation</u>: 0.02 %; <u>Maximum</u> relative <u>deviation</u>: 0.05 %

Density Measurements: G 431 + 10 mol-% of H_2 (BAM G 453)

p, T phase diagram showing the state points of the recorded data

Density Measurements: G 431 + 10 mol-% of H_2 (BAM G 453)

Comparison between *experiment* and *GERG-2008 EoS*: <u>Average absolute relative deviation: 0.03 %; Maximum relative deviation: 0.18 %</u>

Density Measurements: G 431 + 10 mol-% of H_2 (BAM G 453)

Comparison between *experiment* and *GERG-improved EoS*: <u>Average absolute relative deviation: 0.05 %; Maximum relative deviation: 0.20 %</u>

p,*T* phase diagram showing the state points of the recorded data

Density Measurements: G 431 + 20 mol-% of H_2 (BAM G 454)

Comparison between *experiment* and *GERG-2008 EoS*: <u>Average absolute relative deviation: 0.03 %; Maximum relative deviation: 0.11 %</u>

Density Measurements: G 431 + 20 mol-% of H_2 (BAM G 454)

Comparison between *experiment* and *GERG-improved EoS*: <u>Average absolute relative deviation: 0.05 %; Maximum relative deviation: 0.19 %</u>

Density Measurements and Model Results

- Addition of H₂ results in a larger deviation
- Most data are located within the assigned uncertainty boundary for density
- Deviations are observed for EoS model at the two temperatures close to the phase boundary (i.e., 250 and 275 K)
- Deviations of the H₂-containing mixtures from the zero line are mainly negative
- "GERG-improved" works better than the classic GERG-2008 but not for the low temperatures (250 and 275 K)

Outline

- Introduction
- Motivation
- Water vapour enhancement factor in H₂
- Experimental (p, ρ , T) data of the H₂-enriched NG mixtures
- Experimental (p, ρ , T) data of the H₂ + C₃H₈ binary mixtures
- Discussion

Task 2.3: Develop reference equations of state (EOS) for hydrogen-enriched natural gas mixtures and hydrogen under geological storage conditions

- $H_2(x) + C_3H_8$. x = 0.95, 0.90, 0.83 have been gravimetrically prepared
- Experimental (*p*, *ρ*, *T*) and speed of sound have been measured at four different isotherms from 273.15 K to 350 K and at pressures up to 20 MPa.
- $H_2(x) + CO$. x = 0.90, 0.75, 0.60 have been gravimetrically prepared
- Experimental (p, ρ, T) and speed of sound of the mixtures H₂ (x) + CO. (x = 0.90, 0.75, 0.60) at four different isotherms from 273.15 K to 350 K and at pressures up to 20 MPa

WP2: Thermophysical Properties

Steady-state spherical acoustic resonator

Final Project Conference and Workshops

31

30/06/2022

Single Sinker Magnetic Suspension Densimeter

(250 to 400) K

20 MPa

 $U(T) (k = 2) = 4.0 \cdot 10^{-3} \text{ K}$ (0 -3) MPa: $U(p)/\text{MPa} (k = 2) = 60 \cdot 10^{-6} \cdot p/\text{MPa} + 1.7 \cdot 10^{-3}$ (3 - 20) MPa: $U(p)/\text{MPa} (k = 2) = 75 \cdot 10^{-6} \cdot p/\text{MPa} + 3.5 \cdot 10^{-3}$ $U(\rho)/\text{kg} \cdot \text{m}^{-3} (k = 2) = 1.1 \cdot 10^{-4} \cdot \rho/\text{kg} \cdot \text{m}^{-3} + 2.3 \cdot 10^{-2}$

WP2: Thermophysical Properties

p, T phase diagrams showing the state points of the recorded data

Meft

Metrology for Advanced Hydrogen Storage Solutions

Density Measurements and Model Results

- Addition of Propane results in a larger deviation
- Most data are located within the assigned uncertainty boundary for density for the mixture with 5% of propane
- Significant deviations are observed at lower temperatures and higher pressures

Hydrogen Storage Solutions

Outline

- Introduction
- Motivation
- Water vapour enhancement factor in H₂
- Experimental (p, ρ , T) data of the H₂-enriched NG mixtures
- Experimental (p, ρ , T) data of the H₂ + C₃H₈ binary mixtures
- Discussion

Thank you for your attention

David Vega-Maza, Uva, WP2

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States